6y^2+17y-5=0

Simple and best practice solution for 6y^2+17y-5=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6y^2+17y-5=0 equation:


Simplifying
6y2 + 17y + -5 = 0

Reorder the terms:
-5 + 17y + 6y2 = 0

Solving
-5 + 17y + 6y2 = 0

Solving for variable 'y'.

Begin completing the square.  Divide all terms by
6 the coefficient of the squared term: 

Divide each side by '6'.
-0.8333333333 + 2.833333333y + y2 = 0

Move the constant term to the right:

Add '0.8333333333' to each side of the equation.
-0.8333333333 + 2.833333333y + 0.8333333333 + y2 = 0 + 0.8333333333

Reorder the terms:
-0.8333333333 + 0.8333333333 + 2.833333333y + y2 = 0 + 0.8333333333

Combine like terms: -0.8333333333 + 0.8333333333 = 0.0000000000
0.0000000000 + 2.833333333y + y2 = 0 + 0.8333333333
2.833333333y + y2 = 0 + 0.8333333333

Combine like terms: 0 + 0.8333333333 = 0.8333333333
2.833333333y + y2 = 0.8333333333

The y term is 2.833333333y.  Take half its coefficient (1.416666667).
Square it (2.006944445) and add it to both sides.

Add '2.006944445' to each side of the equation.
2.833333333y + 2.006944445 + y2 = 0.8333333333 + 2.006944445

Reorder the terms:
2.006944445 + 2.833333333y + y2 = 0.8333333333 + 2.006944445

Combine like terms: 0.8333333333 + 2.006944445 = 2.8402777783
2.006944445 + 2.833333333y + y2 = 2.8402777783

Factor a perfect square on the left side:
(y + 1.416666667)(y + 1.416666667) = 2.8402777783

Calculate the square root of the right side: 1.685312368

Break this problem into two subproblems by setting 
(y + 1.416666667) equal to 1.685312368 and -1.685312368.

Subproblem 1

y + 1.416666667 = 1.685312368 Simplifying y + 1.416666667 = 1.685312368 Reorder the terms: 1.416666667 + y = 1.685312368 Solving 1.416666667 + y = 1.685312368 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-1.416666667' to each side of the equation. 1.416666667 + -1.416666667 + y = 1.685312368 + -1.416666667 Combine like terms: 1.416666667 + -1.416666667 = 0.000000000 0.000000000 + y = 1.685312368 + -1.416666667 y = 1.685312368 + -1.416666667 Combine like terms: 1.685312368 + -1.416666667 = 0.268645701 y = 0.268645701 Simplifying y = 0.268645701

Subproblem 2

y + 1.416666667 = -1.685312368 Simplifying y + 1.416666667 = -1.685312368 Reorder the terms: 1.416666667 + y = -1.685312368 Solving 1.416666667 + y = -1.685312368 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-1.416666667' to each side of the equation. 1.416666667 + -1.416666667 + y = -1.685312368 + -1.416666667 Combine like terms: 1.416666667 + -1.416666667 = 0.000000000 0.000000000 + y = -1.685312368 + -1.416666667 y = -1.685312368 + -1.416666667 Combine like terms: -1.685312368 + -1.416666667 = -3.101979035 y = -3.101979035 Simplifying y = -3.101979035

Solution

The solution to the problem is based on the solutions from the subproblems. y = {0.268645701, -3.101979035}

See similar equations:

| (5u-8)(7-u)= | | .75(3t-6)=9 | | 13+2(-4x+6)-22=-43 | | 21x^2-34x+8= | | 5y-1ify=3 | | -7x=-7x+3 | | X+-8=20 | | 10b^2-34b-24= | | h(t)=-16t^2+75t+8 | | .7x=110 | | t*4-4=13 | | -10n+20n+-19n+-14n+20n=18 | | 3(a-4)+3(a+1)=10-5a | | 6(2x-7)-3(x+1)-19x= | | 3/y+3/2y=2 | | 4[5-(-2x-5)]=60x+118 | | 3x+2x-25=6x+6 | | 0.20x+0.05(2-x)=0.10(-20) | | 10x-17=3x+7 | | 18=3z+6 | | 0.10x+0.05(2-x)=0.10(-1) | | Vf=0+2*12 | | 3-0.75n=9 | | 5x+10=3(x+-2) | | 11.50x+1.75x=74.25 | | 0=(x-4)(x+9) | | 40-y/3=4+y | | 9(x+1)=5-2(9x-6) | | 3x^2-18xy-7x+42y= | | x*x-((x+1)*(x+1))=31 | | 11=4u+7 | | 5x-5=3(2x+1) |

Equations solver categories